
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

IT Professional
www.computer.org/itpro

Practical Combinatorial Testing:
Beyond Pairwise

Rick Kuhn, Yu Lei, and Raghu Kacker

May/June 2008

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

Practical
Combinatorial
Testing: Beyond
Pairwise
Rick Kuhn, US National Institute of Standards and Technology
Yu Lei, University of Texas, Arlington
Raghu Kacker, US National Institute of Standards and Technology

With new algorithms and tools, developers can apply high-strength
combinatorial testing to detect elusive failures that occur only when
multiple components interact.

Suppose we want to test a process-control
system that has 20 sensors, each with 10
possible values. As usual, exhaustive test-
ing is out of the question: 1020 tests would

require billions of years to execute. We could test
all 10 values for each sensor with only 10 tests, but
that’s unlikely to be enough. Experience suggests
that some faults are triggered only by unusual
combinations—hence, the popularity of pairwise
testing, which is based on the observation that
software faults often involve interactions between
two parameters. In pairwise testing, all possible
pairs of parameter values are covered by at least
one test, and good tools are available to generate
arrays with the value pairs.1 By selecting parameter
values carefully, we could test all value pairs for the
20 sensors in our example with only 180 tests.

But what if some failure is triggered only by a
very unusual combination of three, four, or more
values? It’s unlikely that our 180 tests would de-
tect this unusual case. We would need to test
at least three- and four-way value combinations.
Combinatorial testing beyond pairwise is rare,
however, because good algorithms for higher-
strength combinations haven’t been available or
were too slow for practical use. In the past few
years, advances in covering-array algorithms,
integrated with model checking or other test-
ing approaches, have made it practical to extend
combinatorial testing beyond pairwise tests.
The US National Institute of Standards and
Technology (NIST) and the University of Texas,
Arlington, are now distributing freely available
methods and tools for constructing large t-way

1520-9202/08/$25.00 © 2008 IEEE	 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y	 computer.org/ITPro	 19

INFORMATION & QUALITY ASSURANCE

20	 IT Pro May/June 2008

INFORMATION & QUALITY ASSURANCE

combination test sets (known as covering ar-
rays), converting covering arrays into executable
tests, and automatically generating test oracles
using model checking (http://csrc.nist.gov/acts).
In this review, we focus on real-world problems
and empirical results from applying these meth-
ods and tools.

Motivation and Challenges
If some failure is triggered only by an unusual
combination of more than two sensor values,
how many testing combinations are enough to
detect all errors? What degree of interaction
occurs in real system failures? Surprisingly, re-
searchers hadn’t studied these questions when
NIST began investigating causes of software
failures in 1996. Study results showed that,
across various domains, all failures could be
triggered by a maximum of four- to six-way in-
teractions.2 As Figure 1 shows, the detection
rate increased rapidly with interaction strength.
Within the NASA database application, for ex-
ample, 67 percent of the failures were triggered
by only a single parameter value, 93 percent
by two-way combinations, and 98 percent by
three-way combinations.2 The detection-rate
curves for the other applications studied are
similar, reaching 100 percent detection with
four- to six-way interactions.

These results are not conclusive, but they
suggest that the degree of interaction involved
in faults is relatively low, even though pairwise

testing is insufficient. Testing all four- to six-
way combinations might therefore provide rea-
sonably high assurance. As with most things,
however, the situation isn’t that simple. Quite a
few practical problems remain. Efficiently gen-
erating test suites to cover all t-way combina-
tions is a difficult mathematical problem that
researchers have studied for nearly a century.
In addition, not many applications have only a
few discrete values for each variable; most in-
clude continuous variables with huge ranges of
values, depending on the hardware on which
the program runs. Most glaring of all is the
oracle problem: determining the correct result
that should be expected from the system under
test (SUT) for each set of test inputs. Generat-
ing 1,000 test data inputs is of little help if we
can’t determine what the SUT should produce
as output for each of the 1,000 tests.

With the exception of generating covering ar-
rays, these stumbling blocks are common to all
types of software testing, and researchers have
developed good techniques for dealing with
them. The challenge in making combinatorial
testing practical, then, is to find efficient algo-
rithms to generate covering arrays and effective
methods of integrating the tests produced into
the testing process.

Generating Covering Arrays
The first step in combinatorial testing is to find
a set of tests (a covering array) that will cover
all t-way combinations of parameter values for
the desired strength t. In pairwise testing, t = 2,
and good algorithms are widely available. For
stronger assurance, the results discussed earlier
suggest that we need a set of tests that covers all
four-way or higher-strength combinations of pa-
rameter values. The covering array specifies test
data, where we can regard each row of the array
as a set of parameter values for an individual test.
Collectively, the array’s rows include every t-way
combination of parameter values at least once.

Figure 2 gives an example that shows a three-
way covering array for 10 variables with two
values each. In this array, any three columns
contain all eight possible values for three bi-
nary variables. Therefore, this set of tests will
exercise all three-way combinations of input
values in only 13 tests, compared with 1,024 for
exhaustive coverage. We can generate similar

100
90
80
70
60

50
40

30
20

10

0
1 2 3 4 5 6

Interactions

Cu
m

ul
at

iv
e

pe
rc

en
t

Medical devices
Browser
Server
NASA distributed DB

Figure 1. Error-detection rates for four- to six-
way interactions in four application domains:
medical devices, a Web browser, an HTTP
server, and a NASA distributed database.

	 computer.org/ITPro 	 21

arrays to cover up to all six-way combinations.
New algorithms, such as In-Parameter Order,
General (IPOG) and the Bryce-Colbourn Den-
sity algorithm,3 make this possible with greater
efficiency than previous tools.For example, an
existing tool required 5,400 seconds to produce
a less optimal test set than the IPOG algorithm
generated in 4.2 seconds. These new tools make
it possible to apply combinatorial testing to ap-
plications that previously were prohibitive in
time and cost.

Tackling the Oracle Problem
Although Figure 2 shows that we can accomplish
interaction testing beyond pairwise with far few-
er tests than are required for exhaustive testing,
real systems typically have more than 10 binary
parameters. How many tests are needed for real-
world systems?

In general, the number of tests required for
t-way combinatorial testing of n parameters with
v values apiece is proportional to vt log n. So, the
number of tests needed for four-way testing is
several times that required for three-way test-
ing. On the other hand, testing 30 parameters
requires a modest increase over the number
of tests needed for 20. For example, a system
with 20 variables, five values each, requires 444
tests for three-way coverage but 3,019 tests for
four-way coverage with IPOG. A much smaller
penalty is incurred for covering more variables:
increasing the number of variables to 30 re-
quires 3,749 tests for four-way coverage, a 24
percent increase.

However, even with efficient algorithms to pro-
duce covering arrays, the oracle problem remains.
Taking advantage of combinatorial testing might
require numerous tests in some cases, although
not always. Approaches to addressing the oracle
problem for combinatorial testing include crash
testing, embedded assertions , and model checker-based
test generation.

Crash testing is the easiest and least expensive
approach: simply run tests against the SUT to
check whether any unusual combination of input
values causes a crash or other easily detectable
failure. This form of combinatorial testing could
be regarded as a disciplined form of fuzz testing,
which sends random values against the SUT.5

Although pure random testing will generally
cover a high percentage of t-way combinations,

100 percent coverage of combinations requires a
random test set much larger than a covering ar-
ray. For example, all three-way combinations of
10 parameters with four values each can be cov-
ered with 151 tests using IPOG. Purely random
generation requires approximately 914 tests to
provide full three-way coverage.

Embedded assertions are increasingly popu-
lar. This lightweight formal method embeds
assertions within the code to ensure proper
relationships between data, such as precondi-
tions, postconditions, or input value checks.
Tools such as the Java Modeling Language
(JML) can help us introduce complex asser-
tions, effectively embedding a formal specifica-
tion within the code.6 The embedded assertions
serve as an executable form of the specification,
thus providing an oracle for the testing phase.
With embedded assertions, exercising the ap-
plication with all t-way combinations can pro-
vide reasonable assurance that the code works
correctly across a range of inputs. JML has been
used successfully as a high-level (that is, not
fully complete) specification of system behavior
to test smart cards,7 with embedded JML asser-
tions acting as an oracle for combinatorial tests.
The results showed that 80 to 90 percent of er-
rors could be found in this way.

In a more comprehensive approach, model-
checker based test generation uses a mathematical
model of the SUT and a model checker to generate
expected results for each input. Conceptually, the

0
1
1
1
1
0
0
1
0
0
0
1
0

0
1
1
0
0
1
0
1
0
0
1
0
1

0
1
1
1
0
1
1
0
0
1
0
0
0

0
1
0
1
0
0
0
1
1
1
1
0
0

0
1
1
0
1
0
1
0
1
0
1
0
0

0
1
0
1
1
1
0
0
1
0
0
0
1

0
1
0
0
1
0
1
1
0
1
0
0
1

0
1
0
1
0
0
1
0
0
0
1
1
1

0
1
0
0
0
1
1
1
1
0
0
1
0

0
1
1
0
0
0
0
0
1
1
0
1
1

Figure 2. Three-way covering array for 10
parameters with two values each. Any three
columns contain all eight possible values for
three binary variables.

22	 IT Pro May/June 2008

INFORMATION & QUALITY ASSURANCE

model checker explores all system model states to
determine if a property claimed in a specification
statement is true. A model checker is particularly
valuable because it not only reports that a claim
is false but also provides a counterexample that
includes a trace of parameter input values and
states that will prove it is false. In effect, this is
a complete test case—that is, a set of parameter
values and the expected result. It’s then simple to
map these values into complete test cases in the
syntax needed for the SUT.8 Figure 3 illustrates
this process.

As an example, we applied the model check-
ing approach to combinatorial testing on a
module from the US Federal Aviation Adminis-
tration (FAA) Traffic Collision Avoidance Sys-
tem (TCAS), which had been used in previous
test-method studies. The module used 12 pa-
rameters: seven Boolean, two three-value, one
four-value, and two with 10 values. Research-
ers from Siemens developed 41 versions seeded
with realistic faults. Two thirds of the faulty
versions had single changes such as replacing a
constant with another constant, replacing “>=”
with “>,” or dropping a condition. The rest in-
volved either multiple changes or more complex
single changes. Covering all two- to six-way
combinations for this module required 17,000
tests. Creating the formal system specification
required time and expertise in formal meth-
ods, but once the specification was in place, we
generated and executed all 17,000 tests in a few
minutes.9 Pairwise testing detected 53 percent
of the faults, but testing through five-way com-
binations provided 100 percent detection.

Two Ways to Use Covering Arrays
The two basic approaches to combinatorial test-
ing use combinations of either configuration
parameter values or input parameter values. In
the first approach, we use the covering array to
select values of configurable parameters, pos-
sibly with the same tests run against all config-
uration combinations. For example, we might
test a server by setting up all four-way combi-
nations of configuration parameters—such as
the number of simultaneous connections al-
lowed, the amount of memory, the operating
system, or the database size—and then run
the same test suite against each configuration.
The tests might have been constructed using
any methodology, not necessarily combinato-
rial coverage. In the second approach, we use
the covering array to select input data values,
which then become part of complete test cases,
creating a test suite for the application. This ap-
proach requires combinatorial coverage of in-
put data values for the tests constructed.

Figure 4 contrasts these two approaches for
an example e-commerce system. With the first
approach, we might run the same test set against
all three-way combinations of configuration
options. For the second approach, we would

Figure 3. Generating test cases with a model checker.

Covering
array

Covering
array

generator

Input
values

System
model

Model
checker

Counter-
examples

Post-
processor

Test
cases

System
under test

Figure 4. Two approaches to combinatorial testing:
using configuration parameter values or input data
values.

2 Use combinations of input
values in generating tests

1 Use combinations
of configuration

values with
existing test suite

System
under test

Configuration:
 Browser
 Server
 Operating system
 Database management system
 ...

Inputs:
 Product
 Amount
 Quantity
 Payment method
 Shipping method

2

1

construct a test suite that covers all three-way
combinations of input transaction fields. Of
course, we could combine these approaches,
with the combinatorial tests (approach 2) run
against all the configuration combinations
(approach 1).

Many, if not most, software systems have
a large number of configuration parameters.
Many of the earliest applications of combina-
torial testing were in testing all pairs of system
configurations. For example, telecommunica-
tions software can be configured to work with
different types of calls (local, long distance,
international), billing (caller, phone card, 800),
access (ISDN, VOIP, PBX), and billing servers
(Windows Server, Linux/MySQL, Oracle). The
software must work correctly with all these com-
binations, so we could apply a single test suite
to all pairwise combinations of these four major
configuration items. Any system with a variety of
configuration options is a suitable candidate for
this type of testing.

Configuration coverage is perhaps the most
developed form of combinatorial testing. Testers
have used it for years with pairwise coverage,
particularly for applications that must be shown
to work across various combinations of operat-
ing systems, databases, and network character-
istics. Recently, a more sophisticated version has
proved effective for applications with elaborate
configuration options, such as Web browsers
and office tools.10

T his example demonstrated the feasibility of
higher-strength combinatorial testing for
small- to medium-sized modules. We’re

currently working with developers of real-world
software to measure the costs and benefits of this
approach for full-scale systems. Interested testers
can find more on the methods and tools we de-
scribe here at http://csrc.nist.gov/acts. 	

References
K. Burr and W. Young, “Combinatorial Test Tech-
niques: Table-Based Automation, Test Generation,
and Test Coverage,” Proc. Int’l Conf. Software Testing,
Analysis, and Review (STAR), 1998; http://aetgweb.
argreenhouse.com/papers/1998-star.pdf.
D.R. Kuhn, D.R. Wallace, and A. Gallo, “Software
Fault Interactions and Implications for Software

1.

2.

Testing,” IEEE Trans. Software Eng., vol. 30, no. 6,
2004, pp. 418–421.
R. Bryce and C.J. Colbourn, “A Density-Based Greedy
Algorithm for Higher Strength Covering Arrays,” to
be published in J. Software Testing, Verification, and Re-
liability; www.egr.unlv.edu/~rbryce/research.htm.
R. Bryce and C.J. Colbourn, “The Density Algorithm
for Pairwise Interaction Testing,” J. Software Testing,
Verification, and Reliability, vol. 17, no. 3, Aug. 2007, pp.
159–182.
M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute
Force Vulnerability Discovery, Addison-Wesley, 2007.
G.T. Leavens, A.L. Baker, and C. Ruby. “JML: A No-
tation for Detailed Design,” H. Kilov, B. Rumpe, and
I. Simmonds, eds., Behavioral Specifications of Businesses
and Systems, Kluwer, 1999, pp. 175–188.
L. du Bousquet et al., “A Case Study in JML-Based
Software Validation,” Proc. 19th Int’l IEEE Conf. Auto-
mated Software Eng. (ASE 04), IEEE CS Press, 2004,
pp. 294–297.
P. Ammann and P.E. Black, “Abstracting Formal
Specifications to Generate Software Tests via Model
Checking,” Proc. 18th Digital Avionics Systems Conf., vol.
2., IEEE Press, 1999, pp. 10.A.6.1–10.
D.R. Kuhn and V. Okun, “Pseudo-Exhaustive Test-
ing for Software,” Proc. 30th NASA/IEEE Software Eng.
Workshop, 2006, pp. 153–158; http://csrc.nist.gov/acts/
PID258305.pdf.
M.B. Cohen, J. Snyder, and G. Rothermel, “Testing
Across Configurations: Implications for Combinato-
rial Testing,” Proc. Workshop on Advances in Model-Based
Software Testing, IEEE Press, 2006, pp. 1–9.

Rick Kuhn is a computer scientist in the Computer Se-
curity Division of the US National Institute of Standards
and Technology. Contact him at kuhn@nist.gov.

Yu Lei is an assistant professor of computer science at the
University of Texas, Arlington. Contact him at ylei@uta.
edu.

Raghu Kacker is a mathematical statistician in the Math-
ematical and Computational Sciences Division of the US
National Institute of Standards and Technology. Contact
him at raghu.kacker@nist.gov.

3.

4.

5.

6.

7.

8.

9.

10.

	 computer.org/ITPro 	 23

Join the IEEE Computer Society online
www.computer.org/join/benefits.htm

